Four color theorem

In mathematics, the four color theorem, or the four color map theorem, states that no more than four colors are required to color the regions of any map so that no two adjacent regions have the same color. Adjacent means that two regions share a common boundary of non-zero length (i.e., not merely a corner where three or more regions meet). It was the first major theorem to be proved using a computer. Initially, this proof was not accepted by all mathematicians because the computer-assisted proof was infeasible for a human to check by hand. The proof has gained wide acceptance since then, although some doubts remain.

The theorem is a stronger version of the five color theorem, which can be shown using a significantly simpler argument. Although the weaker five color theorem was proven already in the 1800s, the four color theorem resisted until 1976 when it was proven by Kenneth Appel and Wolfgang Haken. This came after many false proofs and mistaken counterexamples in the preceding decades.

The Appel-Haken proof proceeds by analyzing a very large number of reducible configurations. This was improved upon in 1997 by Robertson, Sanders, Seymour, and Thomas who have managed to decrease the number of such configurations to 633 – still an extremely long case analysis. In 2005, the theorem was verified by Georges Gonthier using a general-purpose theorem-proving software.

https://en.wikipedia.org/wiki/Four_color_theorem

Four color theorem was last modified: January 28th, 2024 by Jovan Stosic

Four color theorem

In mathematics, the four color theorem, or the four color map theorem, states that no more than four colors are required to color the regions of any map so that no two adjacent regions have the same color. Adjacent means that two regions share a common boundary of non-zero length (i.e., not merely a corner where three or more regions meet). It was the first major theorem to be proved using a computer. Initially, this proof was not accepted by all mathematicians because the computer-assisted proof was infeasible for a human to check by hand. The proof has gained wide acceptance since then, although some doubts remain.

The theorem is a stronger version of the five color theorem, which can be shown using a significantly simpler argument. Although the weaker five color theorem was proven already in the 1800s, the four color theorem resisted until 1976 when it was proven by Kenneth Appel and Wolfgang Haken. This came after many false proofs and mistaken counterexamples in the preceding decades.

The Appel-Haken proof proceeds by analyzing a very large number of reducible configurations. This was improved upon in 1997 by Robertson, Sanders, Seymour, and Thomas who have managed to decrease the number of such configurations to 633 – still an extremely long case analysis. In 2005, the theorem was verified by Georges Gonthier using a general-purpose theorem-proving software.

https://en.wikipedia.org/wiki/Four_color_theorem

Four color theorem was last modified: January 28th, 2024 by Jovan Stosic

Four color theorem

In mathematics, the four color theorem, or the four color map theorem, states that no more than four colors are required to color the regions of any map so that no two adjacent regions have the same color. Adjacent means that two regions share a common boundary of non-zero length (i.e., not merely a corner where three or more regions meet). It was the first major theorem to be proved using a computer. Initially, this proof was not accepted by all mathematicians because the computer-assisted proof was infeasible for a human to check by hand. The proof has gained wide acceptance since then, although some doubts remain.

The theorem is a stronger version of the five color theorem, which can be shown using a significantly simpler argument. Although the weaker five color theorem was proven already in the 1800s, the four color theorem resisted until 1976 when it was proven by Kenneth Appel and Wolfgang Haken. This came after many false proofs and mistaken counterexamples in the preceding decades.

The Appel-Haken proof proceeds by analyzing a very large number of reducible configurations. This was improved upon in 1997 by Robertson, Sanders, Seymour, and Thomas who have managed to decrease the number of such configurations to 633 – still an extremely long case analysis. In 2005, the theorem was verified by Georges Gonthier using a general-purpose theorem-proving software.

https://en.wikipedia.org/wiki/Four_color_theorem

Four color theorem was last modified: January 28th, 2024 by Jovan Stosic

Regression toward the mean

In statisticsregression toward the mean (also called reversion to the mean, and reversion to mediocrity) is the phenomenon where if one sample of a random variable is extreme, the next sampling of the same random variable is likely to be closer to its mean. Furthermore, when many random variables are sampled and the most extreme results are intentionally picked out, it refers to the fact that (in many cases) a second sampling of these picked-out variables will result in “less extreme” results, closer to the initial mean of all of the variables.

Mathematically, the strength of this “regression” effect is dependent on whether or not all of the random variables are drawn from the same distribution, or if there are genuine differences in the underlying distributions for each random variable. In the first case, the “regression” effect is statistically likely to occur, but in the second case, it may occur less strongly or not at all.

Regression toward the mean is thus a useful concept to consider when designing any scientific experiment, data analysis, or test, which intentionally selects the “most extreme” events – it indicates that follow-up checks may be useful in order to avoid jumping to false conclusions about these events; they may be “genuine” extreme events, a completely meaningless selection due to statistical noise, or a mix of the two cases.[4

https://en.wikipedia.org/wiki/Regression_toward_the_mean

Regression toward the mean was last modified: January 21st, 2024 by Jovan Stosic