What is difference between data lake and data warehouse?

A data lake contains all an organization’s data in a raw, unstructured form, and can store the data indefinitely — for immediate or future use. A data warehouse contains structured data that has been cleaned and processed, ready for strategic analysis based on predefined business needs.

What is difference between data lake and data warehouse? was last modified: January 17th, 2023 by Jovan Stosic

Data lake – Wikipedia

A data lake is a system or repository of data stored in its natural/raw format, usually object blobs or files. A data lake is usually a single store of data including raw copies of source system data, sensor data, social data etc., and transformed data used for tasks such as reporting, visualization, advanced analytics and machine learning. A data lake can include structured data from relational databases (rows and columns), semi-structured data (CSV, logs, XML, JSON), unstructured data (emails, documents, PDFs) and binary data (images, audio, video). A data lake can be established “on premises” (within an organization’s data centers) or “in the cloud” (using cloud services from vendors such as Amazon, Microsoft, or Google).
Source: Data lake – Wikipedia

Data lake – Wikipedia was last modified: January 17th, 2023 by Jovan Stosic