Electron configuration

Electron atomic and molecular orbitals

Bohr diagram of lithium

In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals. For example, the electron configuration of the neon atom is 1s2 2s2 2p6, meaning that the 1s, 2s and 2p subshells are occupied by 2, 2 and 6 electrons respectively.

Electronic configurations describe each electron as moving independently in an orbital, in an average field created by all other orbitals. Mathematically, configurations are described by Slater determinants or configuration state functions.

According to the laws of quantum mechanics, for systems with only one electron, a level of energy is associated with each electron configuration and in certain conditions, electrons are able to move from one configuration to another by the emission or absorption of a quantum of energy, in the form of a photon.

Knowledge of the electron configuration of different atoms is useful in understanding the structure of the periodic table of elements. This is also useful for describing the chemical bonds that hold atoms together. In bulk materials, this same idea helps explain the peculiar properties of lasers and semiconductors.

Shells and subshells

Main article: Electron shells (l = 0)p (l = 1)m = 0m = 0m = ±1spzpxpyn = 1n = 2

Electron configuration was first conceived under the Bohr model of the atom, and it is still common to speak of shells and subshells despite the advances in understanding of the quantum-mechanical nature of electrons.

An electron shell is the set of allowed states that share the same principal quantum numbern (the number before the letter in the orbital label), that electrons may occupy. An atom’s nth electron shell can accommodate 2n2 electrons. For example, the first shell can accommodate 2 electrons, the second shell 8 electrons, the third shell 18 electrons and so on. The factor of two arises because the allowed states are doubled due to electron spin—each atomic orbital admits up to two otherwise identical electrons with opposite spin, one with a spin +1⁄2 (usually denoted by an up-arrow) and one with a spin of −1⁄2 (with a down-arrow).

subshell is the set of states defined by a common azimuthal quantum number, l, within a shell. The value of l is in the range from 0 to n − 1. The values l = 0, 1, 2, 3 correspond to the s, p, d, and f labels, respectively. For example, the 3d subshell has n = 3 and l = 2. The maximum number of electrons that can be placed in a subshell is given by 2(2l + 1). This gives two electrons in an s subshell, six electrons in a p subshell, ten electrons in a d subshell and fourteen electrons in an f subshell.

The numbers of electrons that can occupy each shell and each subshell arise from the equations of quantum mechanics, in particular the Pauli exclusion principle, which states that no two electrons in the same atom can have the same values of the four quantum numbers.

https://en.wikipedia.org/wiki/Electron_configuration

Electron configuration was last modified: April 18th, 2023 by Jovan Stosic

Dubnium

Dubnium is a synthetic chemical element with the symbol Db and atomic number 105. It is highly radioactive: the most stable known isotope, dubnium-268, has a half-life of about 16 hours. This greatly limits extended research on the element.

Dubnium does not occur naturally on Earth and is produced artificially. The Soviet Joint Institute for Nuclear Research (JINR) claimed the first discovery of the element in 1968, followed by the American Lawrence Berkeley Laboratory in 1970. Both teams proposed their names for the new element and used them without formal approval. The long-standing dispute was resolved in 1993 by an official investigation of the discovery claims by the Transfermium Working Group, formed by the International Union of Pure and Applied Chemistry and the International Union of Pure and Applied Physics, resulting in credit for the discovery being officially shared between both teams. The element was formally named dubnium in 1997 after the town of Dubna, the site of the JINR.

Theoretical research establishes dubnium as a member of group 5 in the 6d series of transition metals, placing it under vanadiumniobium, and tantalum. Dubnium should share most properties, such as its valence electron configuration and having a dominant +5 oxidation state, with the other group 5 elements, with a few anomalies due to relativistic effects. A limited investigation of dubnium chemistry has confirmed this.

https://en.wikipedia.org/wiki/Dubnium

Dubnium was last modified: April 18th, 2023 by Jovan Stosic

Gilbert N. Lewis

Merle Randall

Gilbert Newton Lewis ForMemRS (October 23 or October 25, 1875 – March 23, 1946) was an American physical chemist and a dean of the College of Chemistry at University of California, Berkeley. Lewis was best known for his discovery of the covalent bond and his concept of electron pairs; his Lewis dot structures and other contributions to valence bond theory have shaped modern theories of chemical bonding. Lewis successfully contributed to chemical thermodynamicsphotochemistry, and isotope separation, and is also known for his concept of acids and bases.[8] Lewis also researched on relativity and quantum physics, and in 1926 he coined the term “photon” for the smallest unit of radiant energy.

G. N. Lewis was born in 1875 in Weymouth, Massachusetts. After receiving his PhD in chemistry from Harvard University and studying abroad in Germany and the Philippines, Lewis moved to California in 1912 to teach chemistry at the University of California, Berkeley, where he became the Dean of the College of Chemistry and spent the rest of his life.  As a professor, he incorporated thermodynamic principles into the chemistry curriculum and reformed chemical thermodynamics in a mathematically rigorous manner accessible to ordinary chemists. He began measuring the free energy values related to several chemical processes, both organic and inorganic. In 1916, he also proposed his theory of bonding and added information about electrons in the periodic table of the chemical elements. In 1933, he started his research on isotope separation. Lewis worked with hydrogen and managed to purify a sample of heavy water. He then came up with his theory of acids and bases, and did work in photochemistry during the last years of his life.

Though he was nominated 41 times, G. N. Lewis never won the Nobel Prize in Chemistry, resulting in a major Nobel Prize controversy.

 On the other hand, Lewis mentored and influenced numerous Nobel laureates at Berkeley including Harold Urey (1934 Nobel Prize), William F. Giauque (1949 Nobel Prize), Glenn T. Seaborg (1951 Nobel Prize), Willard Libby (1960 Nobel Prize), Melvin Calvin (1961 Nobel Prize) and so on, turning Berkeley into one of the world’s most prestigious centers for chemistry.

On March 23, 1946, Lewis was found dead in his Berkeley laboratory where he had been working with hydrogen cyanide; many postulated that the cause of his death was suicide. After Lewis’ death, his children followed their father’s career in chemistry, and the Lewis Hall on the Berkeley campus is named after him.

https://en.wikipedia.org/wiki/Gilbert_N._Lewis

Gilbert N. Lewis was last modified: April 18th, 2023 by Jovan Stosic

B2FH paper

The B2FH paper was a landmark scientific paper on the origin of the chemical elements. The paper’s title is Synthesis of the Elements in Stars, but it became known as B2FH from the initials of its authors: Margaret BurbidgeGeoffrey BurbidgeWilliam A. Fowler, and Fred Hoyle. It was written from 1955 to 1956 at the University of Cambridge and Caltech, then published in Reviews of Modern Physics in 1957.

The B2FH paper reviewed stellar nucleosynthesis theory and supported it with astronomical and laboratory data. It identified nucleosynthesis processes that are responsible for producing the elements heavier than iron and explained their relative abundances. The paper became highly influential in both astronomy and nuclear physics.

https://en.wikipedia.org/wiki/B2FH_paper

B2FH paper was last modified: April 18th, 2023 by Jovan Stosic

Fritz Haber

Fritz Haber (German pronunciation: [ˈfʁɪt͡s ˈhaːbɐ] (listen); 9 December 1868 – 29 January 1934) was a German chemist who received the Nobel Prize in Chemistry in 1918 for his invention of the Haber–Bosch process, a method used in industry to synthesize ammonia from nitrogen gas and hydrogen gas. This invention is important for the large-scale synthesis of fertilisers and explosives. It is estimated that one-third of annual global food production uses ammonia from the Haber–Bosch process, and that this supports nearly half of the world’s population. Haber, along with Max Born, proposed the Born–Haber cycle as a method for evaluating the lattice energy of an ionic solid.

Haber, a known German nationalist, is also considered the “father of chemical warfare” for his years of pioneering work developing and weaponising chlorine and other poisonous gases during World War I. He first proposed the use of the heavier-than-air chlorine gas as a weapon to break the trench deadlock during the Second Battle of Ypres. His work was later used, without his direct involvement, to develop Zyklon B, used for the extermination of more than 1 million Jews in gas chambers in the greater context of the Holocaust.

After the Nazi rise to power in 1933, Haber was forced to resign from his positions because he was Jewish. Already in poor health, he spent time in various countries, before Chaim Weizmann invited him to become the director of the Sieff Research Institute (now the Weizmann Institute) in RehovotMandatory Palestine. He accepted the offer, but died of heart failure mid-journey in a Basel hotel on 29 January 1934, aged 65.

Haber has been called one of the most important scientists, if not the most important, in human history and possibly the greatest industrial chemist who ever lived.

https://en.wikipedia.org/wiki/Fritz_Haber

Fritz Haber was last modified: April 18th, 2023 by Jovan Stosic