Music theory is the study of the practices and possibilities of music.
“The term is used in three main ways in music, though all three are interrelated. The first is what is otherwise called ‘rudiments’, currently taught as the elements of notation, of key signatures, of time signatures, of rhythmic notation, and so on. Theory in this sense is treated as the necessary preliminary to the study of harmony, counterpoint, and form. The second is the study of writings about music from ancient times onwards. The third is an area of current musicological study that seeks to define processes and general principles in music — a sphere of research that can be distinguished from analysis in that it takes as its starting-point not the individual work or performance but the fundamental materials from which it is built.”
Music theory is frequently concerned with describing how musicians and composers make music, including tuning systems and composition methods among other topics. Because of the ever-expanding conception of what constitutes music (see Definition of music), a more inclusive definition could be that music theory is the consideration of any sonic phenomena, including silence, as they relate to music. This is not an absolute guideline; for example, the study of “music” in the Quadrivium liberal arts university curriculum that was common in medieval Europe was an abstract system of proportions that was carefully studied at a distance from actual musical practice. However, this medieval discipline became the basis for tuning systems in later centuries, and it is generally included in modern scholarship on the history of music theory.
Music theory as a practical discipline encompasses the methods and concepts composers and other musicians use in creating music. The development, preservation, and transmission of music theory in this sense may be found in oral and written music-making traditions, musical instruments, and other artifacts. For example, ancient instruments from Mesopotamia, China, and prehistoric sites around the world reveal details about the music they produced and potentially something of the musical theory that might have been used by their makers (see History of music and Musical instrument). In ancient and living cultures around the world, the deep and long roots of music theory are clearly visible in instruments, oral traditions, and current music making. Many cultures, at least as far back as ancient Mesopotamia and ancient China, have also considered music theory in more formal ways such as written treatises and music notation. Practical and scholarly traditions overlap, as many practical treatises about music place themselves within a tradition of other treatises, which are cited regularly just as scholarly writing cites earlier research.
In modern academia, music theory is a subfield of musicology, the wider study of musical cultures and history. Etymologically, music theory is an act of contemplation of music, from the Greek θεωρία, a looking at, viewing, contemplation, speculation, theory, also a sight, a spectacle. As such, it is often concerned with abstract musical aspects such as tuning and tonal systems, scales, consonance and dissonance, and rhythmic relationships, but there is also a body of theory concerning practical aspects, such as the creation or the performance of music, orchestration, ornamentation, improvisation, and electronic sound production. A person who researches, teaches, or writes articles about music theory is a music theorist. University study, typically to the M.A. or Ph.D level, is required to teach as a tenure-track music theorist in a US or Canadian university. Methods of analysis include mathematics, graphic analysis, and especially analysis enabled by Western music notation. Comparative, descriptive, statistical, and other methods are also used. Music theory textbooks, especially in the United States of America, often include elements of musical acoustics, considerations of musical notation, and techniques of tonal composition (Harmony and Counterpoint), among other topics.
Fundamentals of music
Music is composed of aural phenomena; “music theory” considers how those phenomena apply in music. Music theory considers melody, rhythm, counterpoint, harmony, form, tonal systems, scales, tuning, intervals, consonance, dissonance, durational proportions, the acoustics of pitch systems, composition, performance, orchestration, ornamentation, improvisation, electronic sound production, etc.
Pitch
Middle C (261.626 Hz).
Pitch is the lowness or highness of a tone, for example the difference between middle C and a higher C. The frequency of the sound waves producing a pitch can be measured precisely, but the perception of pitch is more complex because we rarely hear a single frequency or pure pitch. In music, tones, even those sounded by solo instruments or voices, are usually a complex combination of frequencies, and therefore a mix of pitches. Accordingly, theorists often describe pitch as a subjective sensation.
Most people appear to possess relative pitch, which means they perceive each note relative to some reference pitch, or as some interval from the previous pitch. Significantly fewer people demonstrate absolute pitch (or perfect pitch), the ability to identify pitches without comparison to another pitch. Human perception of pitch can be comprehensively fooled to create auditory illusions. Despite these perceptual oddities, perceived pitch is nearly always closely connected with the fundamental frequency of a note, with a lesser connection to sound pressure level, harmonic content (complexity) of the sound, and to the immediately preceding history of notes heard. In general, the higher the frequency of vibration, the higher the perceived pitch. The lower the frequency, the lower the pitch. However, even for tones of equal intensity, perceived pitch and measured frequency do not stand in a simple linear relationship.
Intensity (loudness) can change perception of pitch. Below about 1000 Hz, perceived pitch gets lower as intensity increases. Between 1000 and 2000 Hz, pitch remains fairly constant. Above 2000 Hz, pitch rises with intensity. This is due to the ear’s natural sensitivity to higher pitched sound, as well as the ear’s particular sensitivity to sound around the 2000–5000 Hz interval, the frequency range most of the human voice occupies.
The difference in frequency between two pitches is called an interval. The most basic interval is the unison, which is simply two notes of the same pitch, followed by the slightly more complex octave: pitches that are either double or half the frequency of the other. The unique characteristics of octaves gave rise to the concept of what is called pitch class, an important aspect of music theory. Pitches of the same letter name that occur in different octaves may be grouped into a single “class” by ignoring the difference in octave. For example, a high C and a low C are members of the same pitch class—the class that contains all C’s. The concept of pitch class greatly aids aspects of analysis and composition.
Although pitch can be identified by specific frequency, the letter names assigned to pitches are somewhat arbitrary. For example, today most orchestras assign Concert A (the A above middle C on the piano) to the specific frequency of 440 Hz, rather than, for instance, 435 Hz as it was in France in 1859. In England, that A varied between 439 and 452. These differences can have a noticeable effect on the timbre of instruments and other phenomena. Many cultures do not attempt to standardize pitch, often considering that it should be allowed to vary depending on genre, style, mood, etc. In historically informed performance of older music, tuning is often set to match the tuning used in the period when it was written. A frequency of 440 Hz was recommended as the standard pitch for Concert A in 1939, and in 1955 the International Organization for Standardization affirmed the choice. A440 is now widely, though not exclusively, the standard for music around the world.
Pitch is also an important consideration in tuning systems, or temperament, used to determine the intervallic distance between tones, as within a scale. Tuning systems vary widely within and between world cultures. In Western culture, there have long been several competing tuning systems, all with different qualities. Internationally, the system known as equal temperament is most commonly used today because it is considered the most satisfactory compromise that allows instruments of fixed tuning (e.g. the piano) to sound acceptably in tune in all keys.
Scales and modes
A pattern of whole and half steps in the Ionian mode or major scale on C About this sound Play (help·info).
Notes can be arranged in a variety of scales and modes. Western music theory generally divides the octave into a series of twelve tones, called a chromatic scale, within which the interval between adjacent tones is called a half step or semitone. In equal temperament each semitone is equidistant from the next, but other tuning systems are also used. Selecting tones from this set of 12 and arranging them in patterns of semitones and whole tones creates other scales.
The most commonly encountered scales are the seven-toned major, the harmonic minor, the melodic minor, and the natural minor. Other examples of scales are the octatonic scale and the pentatonic or five-tone scale, which is common in folk music and blues. Non-Western cultures often use scales that do not correspond with an equally divided twelve-tone division of the octave. For example, classical Ottoman, Persian, Indian and Arabic musical systems often make use of multiples of quarter tones (half the size of a semitone, as the name indicates), for instance in ‘neutral’ seconds (three quarter tones) or ‘neutral’ thirds (seven quarter tones)—they do not normally use the quarter tone itself as a direct interval.
In traditional Western notation, the scale used for a composition is usually indicated by a key signature at the beginning to designate the pitches that make up that scale. As the music progresses, the pitches used may change and introduce a different scale. Music can be transposed from one scale to another for various purposes, often to accommodate the range of a vocalist. Such transposition raises or lowers the overall pitch range, but preserves the intervallic relationships of the original scale. For example, transposition from the key of C major to D major raises all pitches of the scale of C major equally by a whole tone. Since the interval relationships remain unchanged, transposition may be unnoticed by a listener, however other qualities may change noticeably because transposition changes the relationship of the overall pitch range compared to the range of the instruments or voices that perform the music. This often affects the music’s overall sound, as well as having technical implications for the performers.
The interrelationship of the keys most commonly used in Western tonal music is conveniently shown by the circle of fifths. Unique key signatures are also sometimes devised for a particular composition. During the Baroque period, emotional associations with specific keys, known as the doctrine of the affections, were an important topic in music theory, but the unique tonal colorings of keys that gave rise to that doctrine were largely erased with the adoption of equal temperament. However, many musicians continue to feel that certain keys are more appropriate to certain emotions than others. Indian classical music theory continues to strongly associate keys with emotional states, times of day, and other extra-musical concepts and notably, does not employ equal temperament.
Consonance and dissonance
Consonance and dissonance are subjective qualities of the sonority of intervals that vary widely in different cultures and over the ages. Consonance (or concord) is the quality of an interval or chord that seems stable and complete in itself. Dissonance (or discord) is the opposite in that it feels incomplete and “wants to” resolve to a consonant interval. Dissonant intervals seem to clash. Consonant intervals seem to sound comfortable together. Commonly, perfect fourths, fifths, and octaves and all major and minor thirds and sixths are considered consonant. All others are dissonant to greater or lesser degree.
Context and many other aspects can affect apparent dissonance and consonance. For example, in a Debussy prelude, a major second may sound stable and consonant, while the same interval may sound dissonant in a Bach fugue. In the Common Practice era, the perfect fourth is considered dissonant when not supported by a lower third or fifth. Since the early 20th century, Arnold Schoenberg’s concept of “emancipated” dissonance, in which traditionally dissonant intervals can be treated as “higher,” more remote consonances, has become more widely accepted.
Rhythm
This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (July 2015) (Learn how and when to remove this template message)
Main article: Rhythm
Metric levels: beat level shown in middle with division levels above and multiple levels below.
Rhythm is produced by the sequential arrangement of sounds and silences in time. Meter measures music in regular pulse groupings, called measures or bars. The time signature or meter signature specifies how many beats are in a measure, and which value of written note is counted or felt as a single beat.
Through increased stress, or variations in duration or articulation, particular tones may be accented. There are conventions in most musical traditions for regular and hierarchical accentuation of beats to reinforce a given meter. Syncopated rhythms contradict those conventions by accenting unexpected parts of the beat. Playing simultaneous rhythms in more than one time signature is called polymeter. See also polyrhythm.
In recent years, rhythm and meter have become an important area of research among music scholars. Recent work in these areas includes books by Bengt-Olov Palmqvist, Fred Lerdahl and Ray Jackendoff, and Jonathan Kramer. A landmark study in rhythm theory as relates to pitch and meter was published by musicologist Maury Yeston, “The Stratification of Musical Rhythm” (Yale University Press 1976)
Melody
A melody is a series of tones sounding in succession that typically move toward a climax of tension then resolve to a state of rest. Because melody is such a prominent aspect in so much music, its construction and other qualities are a primary interest of music theory.
The basic elements of melody are pitch, duration, rhythm, and tempo. The tones of a melody are usually drawn from pitch systems such as scales or modes. Melody may consist, to increasing degree, of the figure, motive, semi-phrase, antecedent and consequent phrase, and period or sentence. The period may be considered the complete melody, however some examples combine two periods, or use other combinations of constituents to create larger form melodies.
Chord
A chord, in music, is any harmonic set of three or more notes that is heard as if sounding simultaneously. These need not actually be played together: arpeggios and broken chords may, for many practical and theoretical purposes, constitute chords. Chords and sequences of chords are frequently used in modern Western, West African, and Oceanian music, whereas they are absent from the music of many other parts of the world.
The most frequently encountered chords are triads, so called because they consist of three distinct notes: further notes may be added to give seventh chords, extended chords, or added tone chords. The most common chords are the major and minor triads and then the augmented and diminished triads. The descriptions major, minor, augmented, and diminished are sometimes referred to collectively as chordal quality. Chords are also commonly classed by their root note—so, for instance, the chord C major may be described as a triad of major quality built on the note C. Chords may also be classified by inversion, the order in which the notes are stacked.
A series of chords is called a chord progression. Although any chord may in principle be followed by any other chord, certain patterns of chords have been accepted as establishing key in common-practice harmony. To describe this, chords are numbered, using Roman numerals (upward from the key-note), per its diatonic function. Common ways of notating or representing chords in western music other than conventional staff notation include Roman numerals, figured bass (much used in the Baroque era), macro symbols (sometimes used in modern musicology), and various systems of chord charts typically found in the lead sheets used in popular music to lay out the sequence of chords so that the musician may play accompaniment chords or improvise a solo.
Harmony
In music, harmony is the use of simultaneous pitches (tones, notes), or chords. The study of harmony involves chords and their construction and chord progressions and the principles of connection that govern them. Harmony is often said to refer to the “vertical” aspect of music, as distinguished from melodic line, or the “horizontal” aspect. Counterpoint, which refers to the interweaving of melodic lines, and polyphony, which refers to the relationship of separate independent voices, are thus sometimes distinguished from harmony.
In popular and jazz harmony, chords are named by their root plus various terms and characters indicating their qualities. For example, a lead sheet may indicate chords such as C major, D minor, and G dominant seventh. In many types of music, notably Baroque, Romantic, modern, and jazz, chords are often augmented with “tensions”. A tension is an additional chord member that creates a relatively dissonant interval in relation to the bass. Typically, in the classical common practice period a dissonant chord (chord with tension) “resolves” to a consonant chord. Harmonization usually sounds pleasant to the ear when there is a balance between the consonant and dissonant sounds. In simple words, that occurs when there is a balance between “tense” and “relaxed” moments.
Timbre
Spectrogram of the first second of an E9 chord played on a Fender Stratocaster guitar with noiseless pickups. Below is the E9 chord audio:
MENU0:00
Timbre, sometimes called “color”, or “tone color,” is the principal phenomenon that allows us to distinguish one instrument from another when both play at the same pitch and volume, a quality of a voice or instrument often described in terms like bright, dull, shrill, etc. It is of considerable interest in music theory, especially because it is one component of music that has as yet, no standardized nomenclature. It has been called “…the psychoacoustician’s multidimensional waste-basket category for everything that cannot be labeled pitch or loudness,” but can be accurately described and analyzed by Fourier analysis and other methods because it results from the combination of all sound frequencies, attack and release envelopes, and other qualities that a tone comprises.
Timbre is principally determined by two things: (1) the relative balance of overtones produced by a given instrument due its construction (e.g. shape, material), and (2) the envelope of the sound (including changes in the overtone structure over time). Timbre varies widely between different instruments, voices, and to lesser degree, between instruments of the same type due to variations in their construction, and significantly, the performer’s technique. The timbre of most instruments can be changed by employing different techniques while playing. For example, the timbre of a trumpet changes when a mute is inserted into the bell, the player changes their embouchure, or volume.
A voice can change its timbre by the way the performer manipulates their vocal apparatus, (e.g. the shape of the vocal cavity or mouth). Musical notation frequently specifies alteration in timbre by changes in sounding technique, volume, accent, and other means. These are indicated variously by symbolic and verbal instruction. For example, the word dolce (sweetly) indicates a non-specific, but commonly understood soft and “sweet” timbre. Sul tasto instructs a string player to bow near or over the fingerboard to produce a less brilliant sound. Cuivre instructs a brass player to produce a forced and stridently brassy sound. Accent symbols like marcato (^) and dynamic indications (pp) can also indicate changes in timbre.
Dynamics
This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (July 2015) (Learn how and when to remove this template message)
An illustration of hairpins in musical notation.
In music, “dynamics” normally refers to variations of intensity or volume, as may be measured by physicists and audio engineers in decibels or phons. In music notation, however, dynamics are not treated as absolute values, but as relative ones. Because they are usually measured subjectively, there are factors besides amplitude that affect the performance or perception of intensity, such as timbre, vibrato, and articulation.
The conventional indications of dynamics are abbreviations for Italian words like forte (f) for loud and piano (p) for soft. These two basic notations are modified by indications including mezzo piano (mp) for moderately soft (literally “half soft”) and mezzo forte (mf) for moderately loud, sforzando or sforzato (sfz) for a surging or “pushed” attack, or fortepiano (fp) for a loud attack with a sudden decrease to a soft level. The full span of these markings usually range from a nearly inaudible pianissississimo (pppp) to a loud-as-possible fortissississimo (ffff).
Greater extremes of pppppp and fffff and nuances such as p+ or più piano are sometimes found. Other systems of indicating volume are also used in both notation and analysis: dB (decibels), numerical scales, colored or different sized notes, words in languages other than Italian, and symbols such as those for progressively increasing volume (crescendo) or decreasing volume (decrescendo), often called “hairpins” when indicated with diverging or converging lines as shown in the graphic above.
Source: Music theory – Wikipedia