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Abstract– This paper analyzes the deployment 
issues for large-scale WLANs and presents our 
latest results on indoor propagation modeling and 
network planning. Proper network planning is 
necessary for large WLAN installations in order to 
achieve adequate coverage, and it relies heavily on 
the propagation model. We used the dominant path 
method to predict the propagation loss for each 
possible reception point in an indoor environment. 
Based on this propagation model, we further 
examined different combinatorial optimization 
methods to obtain close to optimal positioning of 
the WLAN access points and compare their cost 
effectives to the simple installation methods. The 
optimization algorithms evaluate an objective 
function that aims to maximize both the coverage 
area and the overall signal quality over a discrete 
search space. We propose a combination of two 
algorithms, Genetic Algorithms or Simulated 
Annealing, for the initial set of base stations 
positions, followed by Pattern Search algorithm, 
for the final accurate positions.  

Keywords – WLAN, radio propagation modeling, 
network planning and optimization, simulated 
annealing, genetic algorithms  

1. INTRODUCTION 

Wireless LANs are already widespread in home and 
office environments, providing best-effort services at 
high-data rates while supporting limited user mobility. 
The increase of the density of the Access Points (AP) 
in a given indoor environment stimulates the need of 
their proper deployment to achieve adequate coverage. 
The traditional approach to cellular network 
deployment relies on advanced coverage and capacity 
planning to achieve optimal infrastructure with 
minimal number of base stations while sustaining a 
given quality of service. The WLANs, however, are 
designed to provide low-cost connectivity and are 
usually deployed in an ad-hoc fashion. Advanced 
coverage planning is regarded as too complex and too 
costly for WLANs, hence we investigate ways to 
reduce complexity and improve WLAN performance 
by different types of network planning [1]. 

 

While deploying WLANs for a small home network 
might be easy, deploying them for a large enterprise is 
a non-trivial task. The overall complexity of the 
network planning problem further depends on the 
number of AP sites to be optimized and the frequency 
at which the network operates. By increasing the 
frequency, the achievable cell size shrinks; hence, 
more APs are required to cover the same area.  

The simplest way to install a WLAN is to skip 
propagation analysis and install a few APs in the areas 
where coverage is required and easy access to a wired 
backbone infrastructure is available. It does not 
require a specific radio network planning, so this 
method is most likely to be employed by the end users 
themselves. Although simple, this deployment method 
may result in a wireless network with coverage gaps 
in some areas. 

A second approach is to divide the service area (i.e., 
the part of a building in which wireless access should 
be provided) into K equally sized rectangles, where K 
is the number of available APs, and install APs in the 
center of each rectangle. In such a grid installation, 
the AP sites are uniformly distributed within the 
service area, thus reducing the probability of coverage 
gaps.  

The coverage optimization is the most complex 
method, as it involves the use of propagation analysis 
and optimization algorithms for determining the 
optimal AP positions that provide adequate coverage 
with a minimum infrastructure density. Coverage 
optimization can reduce the number of required APs, 
but the potential cost saving can be limited due to the 
relatively low costs of WLAN equipment, thus 
necessitating a careful cost trade-of.  

The remainder of this article is organized as follows. 
We first discuss the specific problems involved in the 
deployment of WLANs and preset three common 
deployment approaches. In Section 2 we give a review 
of commonly used propagation models and present the 
used ones. Comparison of the user deployment model 
to coverage optimization method is given in third 
section. Section 4 presents the used objective function, 
review a number of optimization algorithms for 
objective minimization, and selects the most suitable 
algorithm. We then conclude the article. 



2. RF PROPAGATION MODELING 

The radio propagation modeling is the most 
complicated aspect of any wireless network planning. 
The indoor radio channel differs from the cellular 
mobile radio channel in two aspects: the distances are 
much smaller, and the variability of the environment 
is much larger for much smaller range of transmitter-
receiver distances. The propagation within buildings is 
strongly influenced by specific features such as layout 
of buildings and construction materials.  

The problem of RF propagation modeling is to devise 
a model that can predict the signal coverage of an AP 
placed at a certain location. The classic statistically 
based model is the Hata-Okumura model [2], which 
determines the mean path loss Lp(d) as according to 
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where d is the distance between transmitter and 
receiver, and n is the path-loss exponent indicating the 
rate at which path loss increases with distance. The Xσ 
is a log-normally distributed random variable 
describing the shadowing phenomenon. Lp(d0) is the 
reference path loss at a given distance d0. All three 
parameters are site and distance dependent, and their 
choices for given environment can best be determined 
by measurements. To determine the actual path-loss, 
transmitter and receiver antenna gains must be 
subtracted from (1).  

In this paper, we present our approach for prediction 
of the mean path loss in an indoor channel. We used 
the so-called dominant path approach for this purpose 
[3]. As shown in Fig. 1a, different rays may reach the 
receiver passing the same sequence of rooms and 
penetrating the same walls. The contributions of those 
rays which offer the same number of interactions to 
the over–all field strength are very similar (and 
grouped together to form the dominant path, Fig.1b), 
while the other rays with more interactions can be 
neglected because of their higher attenuation.  

  
(a) Posible rays (b) Dominant path 

Fig. 1. Representation of the multipath  
by a single dominant path 

 
For determination of the dominant paths in a given 
indoor environment, information about the room 
locations is necessary. The determination of the rooms 
includes an analysis of the neighboring rooms, so that 
the walls coupling to each pair of rooms must also be 
considered. The information about the neighboring 
rooms is used to compute the room structure of the 
indoor environment in form of a tree. For the room 

from Fig. 1, the tree formation, based on the wall 
couplings, is depicted in Fig.2.  
 

  
(a) Room numbers and coupling of walls 

 
(b) Tree structure of rooms 

Fig.2. Determination of the dominant paths 

The root of the tree corresponds to the room in which 
the transmitter is located (Fig.2a). The first layer of 
the tree contains all neighboring rooms and if there is 
more than one coupling wall between the room of the 
transmitter and the neighboring rooms, the 
neighboring room is placed in the first layer as many 
times as there are coupling walls between the two 
rooms. All further layers are determined in a similar 
way. We used the well-known Dijkstra algorithm to 
determine the shortest path between the transmitter 
(i.e. the tree root) and the potential receiver in any 
room (i.e. the node).  

We applied the dominant path approach to predict the 
mean received signal strength within the premises of 
the Institute of Telecommunication at the Faculty of 
Electrical Engineering in Skopje. The prediction 
results are compared to the field measurements at the 
same location realized by using our own RF site 
survey tool. Both the RF site survey tool and the 
measurement methodology are presented in Section 3. 
The prediction and the measurements are realized at 
potential receiver locations placed in the virtual 
rectangle grid over the given floor layout (9 x 6 matrix 
in this case).  

Fig.3 depicts the coverage maps for two AP 
deployment scenarios at the Institute of 
Telecommunications: the single AP placed at location 
3 (Figs. 3a and 3b for prediction and measurement, 
respectively), and the two APs placed at locations 8 
and 42 (Figs. 3c and 3d for prediction and 
measurement, respectively). The colorbar by each 
figure represents the colors mapping to the received 
signal’s mean power in dBm for 5dBm transmitter’s 
output power and omnidirectional transmit and receive 
antennas.  



 
(a) Prediction for AP location 3 

 
(b) Measurements for AP location 3 

 
(c) Prediction for AP locations 8 and 42 

 
(d) Measurements for AP locations 8 and 42 

Fig.3. Comparison of dominant path prediction  
model with the field measurements 

The dark red regions, where the mean power level 
reaches its peak, pinpoint the actual AP locations. The 
dark blue regions represent regions of very low mean 
power, where the wireless clients operate near theirs 
receiver sensitivity threshold. The threshold differs 
among client adapters from different vendors. 
Exceeding this threshold means automatic reduction 
of the bit rate due to low signal quality from 11 Mbit/s 
to 5.5, 2 or 1 Mbit/s in the case of the IEEE 802.11b 
WLAN.  

Fig.3 demonstrates the accuracy of the dominant path 
prediction method for the signal strength (<5%).  

3. RF SITE SURVEY 

The RF site survey is one of the most painstaking 
steps in the deployment process. The purpose of this 
step is to ensure that the preliminary deployment plan 
indeed provides the required coverage. The RF site 
survey involves measuring network performance at 
representative locations, such as the received signal’s 
mean power. The RF site survey tool (Fig.4.), 
developed at the Institute of Telecommunications, 
generates signal strength coverage maps (Fig.3) as 
according to the well-defined measurement 
methodology. The required measurement hardware is 
found in any IEEE 802.11b client adapter. The wireless 
adapter has a measurement module of its own for 
controlling the link quality using Beacon frames from 
the AP.  

 
Fig. 4. GUI of the RF site survey tool  

Based on the properties of indoor radio channels at 2.4 
GHz for IEEE 802.11b WLANs, the measurement 
scenario depends on the predicted RMS delay spread 
∆ for small office/home office (SOHO) and large-office 
environments. The mean path loss at each location in a 
SOHO (a large-office) environment is determined 
from 30 (40) power samples gathered at equidistant 
points along a 20λ circular or linear track by 
calculating the linear average of the series.  Note that 
λ is the carrier wavelength at 2.4 GHz, so 20λ = 2.5 m. 
The equidistant points are positioned at 0.5λ = 6.25 cm 
spacing.  



The choice for 30 measurements for SOHO 
environments is made under assumption that RMS 
delay spread is ∆ = 0.22 ns (so B⋅∆ = 0.5), which 
assures the 95% confidence limits of the measurements 
as about ±1dB. The choice for 40 measurements for 
large-office environments is made under assumption 
that RMS delay spread is ∆ = 0.45 ns (so B⋅∆ = 1), 
which assures the 95% confidence limits of the 
measurements as about ± 0.7dB.  

4. OPTIMIZATION ALGORITHMS AND 
OBJECTIVE FUNCTION 

The base station coverage optimization requires 
finding a minimal set of locations for placing base 
stations such that all the receiver locations are 
covered. A location is said to be covered if the power 
received by it from its corresponding base station is 
greater than certain threshold.  

User deployment approaches that completely avoid 
any numerical optimization can often provide 
sufficient coverage in case for dense networks with 
relatively large cell overlap, such as in typical home or 
office environments. In outdoor environments or 
indoor networks at higher frequencies user 
deployment cannot guarantee good coverage, grid 
installation could be used.  

For environments with difficult propagation 
characteristics coverage optimization is required. 
According [4] numerical coverage optimization should 
be used for sparse networks. In contrast, dense 
networks typically achieve almost the same 
performance with much more cost-efficient user 
deployment. 

An issue with numerical coverage optimization is that 
the optimization functions for the problem are several 
times non-differentiable and even discontinuous. 
Since standard numerical optimization techniques 
cannot be applied, we reverted to using heuristic 
techniques such as direct search methods, simulated 
annealing, or genetic algorithms.  

4.1.1. Objective Function 

Coverage optimization typically comprises two 
objectives: improving the average signal quality in the 
entire service area and minimizing the area with poor 
signal quality. The former objective involves placing 
the APs such that the average signal quality is 
maximized. The latter involves placing APs such that 
the lowest signal quality within the service area is 
maximized, thus reducing the probability of area 
outage. The two objectives do not necessarily have the 
same set of optimal AP locations; hence, a suitable 
trade-off must be found. We use an approach proposed 
in [5], a combination of a minisum and a minimax 
objective function. 

Maximization of the average signal quality is achieved 
by evaluating and minimizing the average path loss f1, 
expressed by: 
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over the entire service area. Here, M is the total 
number of measurement points in the service area, and 

k
ig is the path loss from AP k in the i-th measurement 

point. Each point is assigned to K APs and the 
minimum path loss is chosen, i.e., 
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Where K is the total number of APs. The term gi,max 
defines the maximum tolerable path loss in 
measurement point i. If the threshold gmax is exceeded, 
a penalty term of )( max,i

k
i gg −µ  is added, where µ 

is the penalty factor. 

In order to lessen the worst case path loss second part 
of objective function is introduced to minimize the 
contribution of measurement points with maximal 
path loss: 
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The final form of the objective function (OF), given in 
equation (4), is a combination of equations 1 and 3 
controlled by balancing parameter ψ. 
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For the simulations we took the recommendation in 
[5] and set ψ to a value within the range of [0.5, 1], 
i.e. we used ψ=0.6 that slightly emphasize the first 
term of the OF. Furthermore, in the simulations gi,max 
is set to the value gmax=100dB.  

The optimal location for single AP can be obtained by 
evaluating equation (4) for all possible AP locations 
and choosing the one that achieves the minimum OF. 
Since the number of OF evaluations increases linearly 
with the number of possible AP sites N, the global 
optimal solution couldn’t be obtained by exhaustive 
search. 

The problem of selecting K out of N possible sites is a 
combinatorial problem of order: 
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thus limiting exhaustive search algorithms to cases 
where K and N are very small. 

Unfortunately, there is no known polynomial time 
algorithm that can provide an exact solution to the 
above problem for realistic values of K and N. 
Therefore heuristic-based optimization algorithms are 
used. 



4.2. Optimization Algorithms 

For our test bed environment we used four types of 
heuristic-based algorithms: pruning, simulated 
annealing, genetic algorithms and pattern search. 

4.2.1. Pruning Algorithm (PA) 

Pruning is greedy algorithm based on removal of AP 
with worst OF in iteration. In the initialization each 
AP is iteratively removed, the OF is re-evaluated 
without the removed AP, and the removed AP is 
reseeded. This proceeds until the algorithm has 
calculated the OF for every possible AP removal. The 
AP whose removal achieved the lowest OF is then 
permanently removed, and the algorithm repeats for 
the remaining N-1 APs. The algorithm repeats same 
steps until there are only K APs left.  

In the simulations the algorithm was useful for 
problems where N≤500, and for such cases it could be 
used for providing good starting solution to other 
heuristic search algorithms used for refining the local 
optimum (e.g. pattern search). 

4.2.2. Genetic Algorithms (GA) 

The genetic algorithm is a method for solving 
optimization problems that is based on natural 
selection, the process that drives biological evolution. 
The genetic algorithm repeatedly modifies a 
population of individual solutions. At each step, the 
genetic algorithm selects individuals at random from 
the current population to be parents and uses them to 
produce the children for the next generation. Over 
successive generations, the population "evolves" 
toward an optimal solution.  

The genetic algorithm uses three main mechanisms for 
creating the next generation from the current 
population: selection, crossover and mutation. 

In our simulations the genetic algorithm starts with a 
random set of K AP, or it takes the input from 
previously ran SA or PA algorithms. We used GA 
algorithm’s parameters as shown in table 1. 

Table 1. GA parameters 

Population Size 10 

Generations 200 

Fitness Scaling proportional 

Selection function roulette 

Reproduction 
Elite Count=2 

CrossoverFraction=0.75 

Crossover Single point 

Mutation 
Uniform 

MutationRate=0.8 

4.2.3. Simulated Annealing (SA) 

Simulated annealing is a random search algorithm that 
gradually decreases the degree of randomness until it 
converges to a local optimum.  

The algorithm starts by evaluating the OF for an initial 
set S0 of AP positions that are then randomly altered, 
resulting in a new set, S1. If the new AP positions 
result in an improvement (i.e., OF(S1)<OF(S0)), S1 is 
accepted as the new solution. Otherwise, if 
OF(S1)≥OF(S0), S1 is accepted with probability: 
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where γ is attenuation coefficient and T the system 
temperature (To is the starting temperature). 

 
Fig. 1. Cooling strategy for simulated annealing 

T is a measure of the intensity of the random 
alterations to the AP positions. To improve 
convergence, SA uses a cooling strategy (Fig. 1), 
where the randomness is reduced as the algorithm 
progresses. The cooling strategy used for the AP 
placement problem permits, during its initial phase 
random changes to the AP positions with a large 
radius r0. As the temperature is gradually lowered, the 
circle becomes smaller, and hence the number of 
available neighbors decreases. We’ve used five 
temperature levels as recommended in [5]. The 
acceptance probability Pa(T) should prevent the 
algorithm from becoming trapped in a local optimum. 
It needs to be carefully tuned by adjusting γ to 
encourage convergence while permitting sufficient 
inertia to eventually escape a local optimum. In the 
simulations we used γ=100 and acceptance probability 
in range [0,0.1]. The convergence properties of SA 
depend on the initial solution S0, which can be 
obtained either randomly or as input from previous ran 
of an optimization algorithm (e.g. PA or GA). We ran 
SA for a fixed number of iterations at each of the five 
temperature levels. In the simulations we found that 
SA is equally useful as algorithm for finding good 
global optimum as algorithm for finding good local 
optimum. In combination with PS it regularly 
converged toward global i.e. local optimum. For 
trivial environment it converges straight to local 
optimum without using a PS for refining the results. 

4.2.4. Pattern Search 

Pattern search algorithms represent a special class of 
direct search algorithms. Direct search is a method for 
solving optimization problems that does not require 



any information about the gradient of the objective 
function. As opposed to more traditional optimization 
methods that use information about the gradient or 
higher derivatives to search for an optimal point, a 
direct search algorithm searches a set of points around 
the current point, looking for one where the value of 
the objective function is lower than the value at the 
current point. A pattern search algorithm computes a 
sequence of points that get closer and closer to the 
optimal point. At each step, the algorithm searches a 
set of points, called a mesh, around the current point 
i.e. the point computed at the previous step. If the 
algorithm finds a point in the mesh that improves the 
objective function at the current point, the new point 
becomes the current point at the next step of the 
algorithm. 

4.2.5. Optimization results 

In the simulations we used chain of two optimization 
algorithms: 

• Genetic algorithm in combination with 
pattern search (GA+PS), 

• Simulated annealing in combination with 
patter Search (SA+PS). 

 

 

 

 
Fig.2 Convergence of the algorithms in office 

environment. 

The GA+PS chain has lesser computational 
complexity but not always converge to the optimum. 
SA+PS chain has greater computational complexity 
but for evaluated office environments it always 

converged to the global optimum. Standard deviation 
of the results for OF was zero i.e. the consecutive runs 
of SA+PS for same office environments gave same 
values for the objective function and same positions 
for the chosen K APs. Fig.2 depicts time execution 
plots of the two mentioned chains of optimization 
algorithms. On plots (a) and (b) we could examine the 
convergence of the GA+PS and on plots (c) and (d) 
the convergence of SA+PS algorithms. We deduce 
that former combination gave suboptimal results 
compared to the latter combination which is optimal. 
The plots are for office environment with size 
25x16m2, 10 rooms divided by 10cm thick gypsum 
walls and 1m grid size. 

5. Conclusion 

This paper presents the various network planning 
issues for large-scale WLAN deployment: 
propagation modeling, RF site survey and coverage 
optimization algorithms. We utilized the dominant 
path method for indoor channel’s signal strength 
prediction and applied it on two separate deployment 
scenarios on our office floor. Comparison with the 
measurements from the RF site survey verifies the 
accuracy of the prediction model. The prediction 
coverage maps for each possible AP location in the 
virtual layout grid are the input variables to the 
optimization algorithms. The optimization objective 
function aims both maximize the average signal 
strength and minimize the area with poor signal 
quality in the entire service area over a discrete search 
space. We explored and tested several optimization 
algorithms over a well-known objective function. The 
least computational effort and the most accurate 
results are obtained by the combination of two 
algorithms that are initiated in sequence. The Genetic 
Algorithms or Simulated Annealing is used to 
determine the initial solution set and the Pattern 
Search algorithm to determine the final accurate AP 
positions.  
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